Phương pháp tọa độ hóa hình không gian Tọa độ hóa hình học không gian

Phương pháp tọa độ hóa hình không gian gồm 16 trang hướng dẫn phương pháp tọa độ hóa để giải các bài toán hình học không gian. Tài liệu bao gồm các kiến thức như: các công thức, cách xác định tọa độ điểm, cách chọn hệ trục tọa độ – chọn véctơ kèm theo các ví dụ minh họa.

Tọa độ hóa hình học không gian được trình bày rất khoa học, logic giúp người học dễ hình dung và hiểu rõ kiến thức. Thông qua tài liệu này các bạn lớp 12 nhanh chóng nắm vững kiến thức để giải nhanh các bài tập hình không gian. Bên cạnh đó các bạn xem thêm bộ đề ôn thi THPT Quốc gia môn Toán, phân dạng câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán.

Phương pháp tọa độ hóa hình không gian

I. Các công thức tọa độ hóa hình không gian

1. Vectơ trong không gian

Trong không gian cho các vect và số k tùy

– Tích có hướng:

– Hai vectơ vuông góc nhau

– Gọi là góc hợp bởi hai vectơ

– Tọa độ các điểm đặc biệt:

– Tọa độ trung điểm I của A B:

Tọa độ trọng tâm G của tam giác A B C:

– Tọa độ trọng tâm G của tứ diện ABCD:

Tích có hướng của hai vectơ là 1 vectơ vuông góc của hai vectơ xác định bởi

Đọc thêm:  Tiếng Anh 9 Unit 1: Getting Started Soạn Anh 9 trang 6, 7

– Một số tính chất của tích có hướng

và cùng phương

A, B, C thẳng hàng

Ba vectơ đồng phẳng

Bốn điểm A, B, C, D không đồng phẳng

Các ứng dụng của tích có hướng

Diện tích tam giác:

*Thể tích khối hộp:

*Thể tích tứ diện:

2. Phương trình mặt phẳng

– Phương trình tổng quát

– Phương trình mặt phẳng qua và có vectơ pháp tuyến

Phương trình mặt phẳng theo đoạn chắn: qua A(a, 0,0) ; B(0, b, 0) ; C(0,0, c)

với

– Nếu là vectơ pháp tuyến của thì cũng là vectơ pháp tuyến của . Do đó một mặt phẳng có vô số vectơ pháp tuyến. Trong một số trường hợp ta có thể tìm vectơ pháp tuyến bằng cách chọn một giá trị cụ thể (hoặc b hoặc c) và tính hai giá trị còn lại đảm bảo đúng tỉ lệ a: b: c.

3. Góc

Góc giũa hai mặt phẳng: Cho mặt phẳng có vectơ pháp tuyến là , mặt phẳng có vectơ pháp tuyến , khi đó góc giữa và được tính bằng

Góc giữa hai đường thẳng: Cho hai đường thẳng và có các vectơ chỉ phương là và , khi đó góc giữa và tính bằng

2. Xác định tọa độ điểm

2.1 Tọa độ điểm trên trục tọa độ

Tìm tọa độ điểm A trên trục tọa độ ta tìm khoảng cách từ A đến gốc tọa độ và dựa vào chiều dương đã chọn để xác định tọa độ A.

Ví dụ chọn tia O A trùng tia O x , điểm A và B nằm trên O x

Đọc thêm:  Bộ Sưu Tập Hình Quả Chanh Cực Chất Full 4K Với Hơn 999+ Hình

• O A = 2 ⇒ A (0, 0, 2).

• O B = 3 ⇒ B (0, 0,−3) (do B nằm ở phần âm)

2.2 Tọa độ điểm trên mặt phẳng tọa độ

Tìm tọa độ của A trên 1 mặt phẳng tọa độ ta tìm hình chiếu của A trên các trục tọađộ và dựa vào các tọa độ hình chiếu này để xác định tọa độ A.

Ví dụ các điểm A,B,C có hình chiếu trên các trục với độ dài như hình vẽ, theo chiều dươngđã chọn ta được

• AK = 1 = xK , AH = 2 = yK : tọa độ A(1, 2)

• B I = 2 = −xB (do B nằm phần âm của trục hoành),BM = 1 = yB : tọa độ B(−2, 1)

• C J = 2,C M = 2: tọa độ C (−2,−2) (do C nằm ở phần âm của trục tung và trục hoành)

2.3 Tọa độ điểm trường hợp tổng quát

Tìm tọa độ của A đầu tiên ta tìm tọa độ hình chiếu H của A lên mặt phẳng tọa độ bất kì, sau đó ta tính độ dài AH . Tọa độ A xác định nhờ tọa độ H và độ dài AH .

Ví dụ tọa độ hình chiếu vuông góc của A lên mặt phẳng Oxy là H (a,b ), ta tính được AH = c thì khi đó A có tọa độ A(a,b, c ) (giả sử rằng các thành phần tọa độ A đều nằm trong phầndương).

………….

Mời các bạn tải file tài liệu để xem thêm nội dung chi tiết

5/5 - (8623 bình chọn)
Cảm ơn các bạn đã đồng hành và theo dõi https://th-thule-badinh-hanoi.edu.vn/ !!!!. Hãy cho chúng tớ 1 like để tiếp tục phát triển nhều kiến thức mới nhất cho bạn đọc nhé !!!

Huyền Trân

Dương Huyền Trân có trình độ chuyên môn cao về giáo dục và hiện tại đang đảm nhận vị trí chuyên viên quản trị nội dung tại website: https://th-thule-badinh-hanoi.edu.vn/ . Để hoàn thành thật tốt công việc mà mình đang đảm nhận thì tôi phải nghiên cứu và phân tích quá trình hoạt động phát triển các dịch vụ, sản phẩm của từng ngành khác nhau.

Bài viết liên quan

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button